简单细分曲线


细分曲线

对于给定\(\mathbb{R}^2\)内一组有序点\(\{\mathbf{Q}_i\}_{i=0}^n\),构成简单多边形,找到一条与之关联的光滑曲线。

Chaikin细分曲线(二次B-spline曲线细分)

拓扑规则:

  • 点分裂成边(割角),老点被抛弃(逼近型)
  • 新点老点重新编号

几何规则:

  • \(\mathbf{Q}'_{2i}=\frac{1}{4}\mathbf{Q}_{i-1}+\frac{3}{4}\mathbf{Q}_i\)
  • \(\mathbf{Q}'_{2i+1}=\frac{3}{4}\mathbf{Q}_i+\frac{1}{4}\mathbf{Q}_{i+1}\)

下图展示了经过5次Chaikin细分得到的细分曲线: Chaikin细分曲线(左:不封闭;右:封闭)

三次B-spline曲线细分

拓扑规则:

  • 边分裂成两条新边

几何规则:

  • \(\mathbf{Q}'_{2i}=\frac{1}{8}\mathbf{Q}_{i-1}+\frac{3}{4}\mathbf{Q}_i+\frac{1}{8}\mathbf{Q}_{i+1}\)
  • \(\mathbf{Q}'_{2i+1}=\frac{1}{2}\mathbf{Q}_i+\frac{1}{2}\mathbf{Q}_{i+1}\)

下图展示了重复5次的“三次B样条”曲线细分得到的细分曲线: 三次B样条细分曲线(左:不封闭;右:封闭)

四点插值型细分(补角)

拓扑规则:

  • 保留原有顶点
  • 对每条边,增加一个新顶点

几何规则:

  • \(\mathbf{Q}'_{2i+1}=\frac{\mathbf{Q}_i+\mathbf{Q}_{i+1}}{2}+\alpha\left(\frac{\mathbf{Q}_i+\mathbf{Q}_{i+1}}{2}-\frac{\mathbf{Q}_{i-1}+\mathbf{Q}_{i+2}}{2}\right)\)

下图展示了重复5次的四点插值细分得到的细分曲线: 封闭控制多边形的四点插值细分曲线

主要代码

  • Chaikin细分:

    std::vector<Ubpa::pointf2> Chaikin_subdivision(std::vector<Ubpa::pointf2 >* p, bool close) {
        std::vector<Ubpa::pointf2> newP;
        newP.clear();
        int n=p->size();
        if (close) {
            for (int i=0;i<p->size();++i) {
                newP.push_back(p->at((i-1+n)%n)*0.25f+p->at(i)*0.75f);
                newP.push_back(p->at(i)*0.75f+p->at((i+1)%n)*0.25f);
            }
        }
        if (!close) {
            newP.push_back(p->at(0)*0.75f+p->at(1)*0.25f);
            for (int i=1;i<p->size()-1;++i) {
                newP.push_back(p->at((i-1+n)%n)*0.25f+p->at(i)*0.75f);
                newP.push_back(p->at(i)*0.75f+p->at((i+1)%n)*0.25f);
            }
            newP.push_back(p->at((2*n-2)%n)*0.25f+p->at(n-1)*0.75f);
        }
        return newP;
    }

  • 三次B样条细分曲线

    std::vector<Ubpa::pointf2> cubic_subdivision(std::vector <Ubpa::pointf2 >* p, bool close) {
        std::vector<Ubpa::pointf2> newP; newP.clear();
        int n=p->size();
        if (close) {
            for (int i=0;i<p->size();++i) { 
                newP.push_back(p->at((i-1+n)%n)*0.125f+p->at(i)*0.75f+p->at((i+1)%n)*0.125f); 
                newP.push_back(p->at(i)*0.5f+p->at((i+1)%n)*0.5f);
            }
        }
        if (!close) {
            newP.push_back(p->at(0)*0.5f+p->at(1)*0.5f); 
            for (int i=1;i<p->size()-1;++i) {
                newP.push_back(p->at((i-1+n)%n)*0.125f+p->at(i)*0.75f +p->at((i+1)%n)*0.125f);
                newP.push_back(p->at(i)*0.5f+p->at((i+1)%n)*0.5f); 
            }
        }
        return newP; 
    }

  • 四点插值型细分曲线

    std::vector<Ubpa::pointf2> quad_subdivision(std::vector <Ubpa::pointf2>* p, bool close, float alpha=0.075) {
        std::vector<Ubpa::pointf2> newP; newP.clear();
        int n=p->size();
        if (close) {
            for (int i=0;i<p->size();++i) { 
                newP.push_back(p->at(i)); 
                newP.push_back((p->at(i)+p->at((i+1)%n))/2.0f+((p->at(i)+p->at((i+1)%n))/2.0f-(p->at((i-1+n)%n)+p->at((i+2)%n))/2.0f)*alpha);
            } 
        }
        if (!close) {
            for (int i=0;i<p->size()-1;++i) {
                newP.push_back(p->at(i)); 
                newP.push_back((p->at(i)+p->at((i+1)%n))/2.0f+((p->at(i)+p->at((i+1)%n))/2.0f-(p->at((i-1+n)%n)+p->at((i+2)%n))/2.0f)*alpha);
            } 
        }
        return newP; 
    }


评论
 上一篇
使用Hexo搭建Github静态页面与域名绑定 使用Hexo搭建Github静态页面与域名绑定
通过Hexo和GitHub Pages,搭建一个免费的静态博客非常简单且高效。本教程将详细介绍如何使用Hexo搭建静态页面并将其托管到GitHub Pages上,同时绑定自定义域名。
2022-03-15
下一篇 
三次样条插值 三次样条插值
本文介绍了三次样条插值的原理和实现,主要包括$C^2$连续、$C^0$连续和$G^1$连续三种情况。通过高斯-塞德尔迭代求解三对角线性系统,实现了三次样条插值的可视化。
2020-11-10