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Abstract
Combining theLagrangemultipliermethod, theUzawa algorithm, and the least square progressive and iterative approximation
(LSPIA), we proposed the constrained least square progressive and iterative approximation (CLSPIA) to solve the problem
of B-spline curve and surface fitting with constraint on data interpolation, i.e., computing the control points of a B-spline
curve or surface which interpolates one set of input points while approximating the other set of given points. Compared with
the method of solving the linear system directly, CLSPIA has some advantages as it inherits all the nice properties of LSPIA.
Because of the data reuse property of LSPIA, CLSPIA reduces a great amount of computation. Using the local property of
LSPIA, we can get shape preserving fitting curves by CLSPIA. CLSPIA is efficient for fitting large-scale data sets due to
the fact that its computational complexity is linear to the scale of the input data. The many numerical examples in this paper
show the efficiency and effectiveness of CLSPIA.

Keywords B-spline · Interpolation and approximation · Data fitting · Progressive and iterative approximation (PIA) · Least
square progressive and iterative approximation (LSPIA)

1 Introduction

Curve and surface fitting plays an extremely important
role in industrial applications. It is a fundamental problem
in many fields, such as computer-aided design, computer
graphics, data visualization, virtual reality, surface model-
ing, digital image processing, shape modeling, data mining
and many related areas [49, 58]. Data fitting consists of
data interpolation in which all data should be interpolated,
data approximation based on minimizing a certain measure
related to all input data, and constrained fitting inwhich some
points of the input data set should be interpolated and others
should be approximated [48].

B-splines in their generalization non-uniform rational B-
splines (NURBS) form a part of the industry standard for the
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CADandgraphics communities. B-splines arewidely used in
the CAD/CAM industries for free-form shape representation
and data storage due to their simplicity [33]. They are also
widely used in data fitting, especially cubic B-splines [43,
45]. In the literature, there exist some empirical methods to
determine the parameters of input data points, knots of B-
spline and the number of knots. Their optimization leads to
complex nonlinear optimization problems; it is, therefore,
difficult to solve, but in general they produce good results
[43]. When the number of knots, knots of B-spline, and data
parameters are determined, the problem of computing the
control points of fitting curves or surfaces reduces to solving
a system of linear equations [4, 25, 48, 51], which can be
solved directly.

Besides solving the linear system directly, the progressive
and iterative approximation (PIA) [27, 30] and LSPIA [16]
are also efficient and intuitive methods in data interpolation
and approximation, respectively, especially for large-scale
data sets. It avoids solving a linear system directly, and is
very flexible because of the local and progressive manner in
updating the resulting control points. It thus has attracted
increasing attention in recent years [29, 54, 56] and one
can find various algorithms for data interpolation and data
approximation [16, 21]. The question that naturally arises is,
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can we use the idea of PIA and LSPIA to solve the problem
of constrained fitting?

Combining the Lagrange multiplier method, with the
Uzawa iteration and LSPIA, we propose to find the solution
of constrained fitting by CLSPIA. As we will show later,
CLSPIA has some advantages over solving the linear system
directly. For example, using LSPIA, it is efficient to opti-
mize the parameters of input data points, knots of B-spline
and the number of knots; we demonstrate that we can also
easily optimize them using CLSPIA.

The structure of this paper is as follows. In Sect. 2, we
show some preliminaries and relevant work of the proposed
CLSPIA algorithm. In Sect. 3, we describe the CLSPIA algo-
rithm and analyze its convergence. In Sect. 4, we present
some experimental results and shape preserving properties
of CLSPIA. In Sect. 5, we give the conclusions of this paper.

2 Preliminaries and related work

2.1 Constrained fitting

For curve fitting with interpolation constraints, Smith et
al. [43, 48] proposed a least squares fitting algorithm with
weighted constraints in 1974. Given two sets of points Q
and R, one wants to fit a spline curve that approximates the
set of points Q while interpolating the other set of points R.
Applying the Lagrangemultipliermethod, they converted the
problem with partial points interpolation into the solution of
a linear system:

[
ATWA BT

B 0

] [
P
�

]
=

[
ATWQ

R

]
, (1)

where Q is the unconstrained set of points and A denotes its
corresponding configuration matrix composed of basis func-
tions,R is the set of points as interpolation constraints and B
denotes its corresponding configuration matrix composed of
basis functions,W is a diagonal matrix which represents the
weights, P is the set of control points of the fitting curve, and
� represents a supplementary set of variables for solving the
constrained system. The solutions of �, P are then derived
as

� = (B(ATWA)−1BT)−1(B(ATWA)−1ATWQ − R),

P = (ATWA)−1ATWQ − (ATWA)−1BT�.

The solutions seem to be complex, and thus it is difficult to
handle when the size of the set of data points is very large.
In 2005, Ke et al. [23] proposed a new constrained fitting
method for profile curve reconstruction. They reduced the
condition number of the Hessian matrix by using the simi-

larity transformation and, therefore, the numerical stability
was significantly improved.

2.2 PIA and LSPIA

PIA obtains a series of fitting curves by iteratively adjusting
the position of the control points [27, 30, 31, 36, 47]. The
concept of the PIA was first proposed for uniform cubic B-
spline curve interpolation by Qi et al. [44] in 1975 and was
named as “profit and loss correction algorithm,” which was
proven to be convergent by De Boor [5]. In 2004, Lin et al.
[30] found that non-uniform cubic B-splines have the same
properties and further proved that curves and surfaces with
normalized and totally positive basis also have this property
[27]. From then on, PIA is used for various curve and sur-
face interpolation, including uniform cubic B-spline curves
[5, 15, 44, 53], non-uniform B-spline curves/surfaces [16,
24, 26, 30, 31, 37, 52], NURBS curves [47], curves/surfaces
with normalized and totally positive basis [27], triangular
Bernstein-Bézier (B-B) surfaces [7, 57], Doo–Sabin subdi-
vision surfaces [11, 18], loop subdivision surfaces [12, 13,
37, 38], Catmull–Clark subdivision surfaces [10, 37],Wang–
Ball curves [6], Said-Ball surfaces on triangular domain [55]
and triangular Bézier surfaces [8].

Least square fitting (LSF) is a traditional method for B-
spline curve fitting [21, 40, 41], and it reduces the problem
to a linear system, which can be solved directly. However,
when the scale of the linear system is very large, solving the
linear system directly is usually not feasible due to numerical
instability.

In 2011, Lin and Zhang [31] proposed the extended PIA
(EPIA) to fit data using normalized totally positive (NTP)
bases. The limit of the fitting curve/surface is not the same
as the one obtained by LSF. In 2014, Deng and Lin [16]
proposed a method called LSPIA for data fitting of B-spline
curve and surface by combining the LSF and PIA. Similar
to the typical PIA algorithm, LSPIA starts with an initial
B-spline curve or surface and constructs a series of fitting
curves or surfaces by adjusting the control points iteratively.
In each iteration, the adjusting vector of each control point is
a weighted sum of some difference vectors between the data
points and their corresponding points on the fitting curve or
surface) [16]. The limit curve (surface) of LSPIA is the same
as the LSF result of the given data points. Zhang et al. [54]
showed that the LSPIA is also convergent for generalized
B-spline curves with two different kinds of weights. Lin et
al. [28] showed that even if the iterative matrix is singular,
the LSPIA still converges. Since the iteration of LSPIA is
related to the number of data points and is independent of the
number of control points, which is unknown, it is suitable for
large-scale data processing [29].
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2.3 Uzawa algorithm

Actually, solving (1) is also known as solving a saddle point
problem. A saddle point or minimax point [19] is a point
on the graph of a function where the slopes (derivatives) in
orthogonal directions are both zero (a critical point), but it
is not a local extremum of the function [22]. See the survey
paper by Benzi et al. [3], there are many classic methods for
numerical solution of saddle point problems. We select the
Uzawa algorithm [50] as it is a simple and highly efficient
method [2, 14, 17, 32, 34, 35, 39] for solving the saddle point
problem based onmatrix splitting to solve the quadratic opti-
mization problems, to solve (1). For a saddle point problem
of the form

[
A BT

B 0

] [
x1
x2

]
=

[
b1
b2

]
, (2)

with initial values x(0)
1 , x(0)

2 , where A is an invertible matrix,
Uzawa algorithm is defined as follows [9, 50]:

Ax(r)
1 = b1 − BTx(r−1)

2 , (3)

x(r)
2 = x(r−1)

2 + α(Bx(r)
1 − b2), (4)

where α is a given real number, and according to (2), we
can get BA−1BTx2 = BA−1b1 − b2. Uzawa algorithm is
equivalent to applying a gradient algorithm to this equation
using a fixed step size α, and the iteration converges if α <

2‖BA−1BT‖−1 [1, 20], where ‖ · ‖ denotes a certain norm of
the matrix (i.e., the �2-norm). See Algorithm 1.

Algorithm 1 Uzawa Algorithm

Require: Given α < 2‖BA−1BT‖−1, initialize x2
Ensure: Find the numerical solution x1, x2 of (2).
repeat
x1 ← A−1(b1 − BTx2)
x2 ← x2 + α(Bx1 − b2)

until satisfy convergence criterion

3 CLSPIA for curve and surface fitting

From (1), (2), (3) and (4), we can see that the Uzawa algo-
rithm can be used to solve constrained data fitting of B-spline
curves and surfaces. Specifically, we use LSPIA to solve the
linear system (3) and then the constrained fitting problem (1),
we name such algorithm as CLSPIA.

In this section,wefirst use theLagrangemultipliermethod
to convert the constrained fitting problem to a saddle point
problem in Sect. 3.1, then present the CLSPIA algorithm of

B-spline curve fitting in Sect. 3.2, and analyze its conver-
gence in Sect. 3.3. We will extend the CLSPIA method to
surface fitting in Sect. 3.4.

3.1 Constrained fitting and Lagrangemultiplier
method

Let {Ki }mi=0 be an ordered set of points in R
2, {Q j }m1

j=0 ⊂
{Ki }mi=0 with parameters {t j }m1

j=0 being the set of points to be

approximated, and let {Rk}m2
k=0 ⊂ {Ki }mi=0 with parameters

{sk}m2
k=0 be the set of points to be interpolated, where m1 +

m2 = m + 1 and the set {Q j }m1
j=0 and set {Rk}m2

k=0 constitute
the complete set {Ki }mi=0. Let P(t) be the fitting curve given
by

P(t) =
n∑

i=0

Bi (t)Pi , t ∈ [0, 1] ,

where Bi (t) are B-spline basis functions, and {Pi }ni=0 is
the set of control points. The constrained fitting problem is
defined as

P = argmin
P

m1∑
j=0

∥∥P(t j ) − Q j
∥∥2
2 ,

s.t . P(sk) = Rk, (k = 0, 1, . . . ,m2),

whereP = [P0, P1, . . . , Pn]T. Using theLagrangemultiplier
method, the solution can be derived by finding the minimum
of

L(P,λ) =
m1∑
j=0

∥∥P(t j ) − Q j
∥∥2
2 +

m2∑
k=0

λTk (P(sk) − Rk) ,

where λk ∈ R
2 and λ = [λ0, λ1, . . . , λm2 ]T. According to

the principle of Lagrange multiplier method, the following
linear system can be obtained

ATAP − ATQ + BTλ = 0,

BP − R = 0, (5)

where

A =

⎡
⎢⎢⎢⎣

B0(t0) B1(t0) · · · Bn(t0)
B0(t1) B1(t1) · · · Bn(t1)

...
...

...

B0(tm1) B1(tm1) · · · Bn(tm1)

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣

B0(s0) B1(s0) · · · Bn(s0)
B0(s1) B1(s1) · · · Bn(s1)

...
...

...

B0(sm2) B1(sm2) · · · Bn(sm2)

⎤
⎥⎥⎥⎦ ,
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Fig. 1 Difference vectors δ j for all the approximation points (hollow
dots) and the adjusting vectors �i for all control points after the r-th
curve P(r1,r)(t) (blue) in the r1-th Uzawa iteration

Q = [Q0, Q1, . . . , Qm1 ]T, R = [R0, R1, . . . , Rm2 ]T.

This leads to a saddle problem

[
ATA BT

B 0

] [
P
λ

]
=

[
ATQ
R

]
, (6)

based on Uzawa algorithm [50], and the above saddle prob-
lem can be solved by the following iterative method:

ATAP(r1) = ATQ − BTλ(r1−1),

λ(r1) = λ(r1−1) + μ(BP(r1) − R). (7)

3.2 The CLSPIA algorithm for curve fitting

At the beginning of the iteration, we specify a set of initial
control points {P(1,0)

i }ni=0, where the first and second super-
script (1, 0) of Pi represent the iteration steps of Uzawa
algorithm and LSPIA, respectively, and the initial vector
λ

(0)
k = [1, 1]T for each interpolation point Rk as the initial

value. Then, the initial curve is given as

P(1,0)(t) =
n∑

i=0

Bi (t)P
(1,0)
i , t ∈ [0, 1].

Our CLSPIA algorithm includes two alternating steps.We
first introduce how to use LSPIA to solve (7). Suppose that
we have obtained the r-th curve P(r1,r)(t) in the r1-th Uzawa
iteration, the difference vectors are

δ
(r1,r)
j = Q j − P(r1,r)(t j ), j = 0, 1, . . . ,m1,

then the adjusting vector for the i-th control point is defined
as (see Fig. 1)

�
(r1,r)
i = 1

μ1
(ε

(r1,r)
i − θ

(r1)
i ), (8)

where μ1 is a constant satisfying the condition μ1 >
γ0
2 , let

γ0 be the largest eigenvalue of ATA, and

ε
(r1,r)
i =

m1∑
j=0

Bi (t j )δ
(r1,r)
j ,

θ
(r1)
i =

m2∑
k=0

Bi (sk)λ
(r1−1)
k .

The control points are then updated as

P(r1,r+1)
i = P(r1,r)

i + �
(r1,r)
i , (9)

and the (r + 1)-th curve can be generated as

P(r1,r+1)(t) =
n∑

i=0

Bi (t)P
(r1,r+1)
i .

By induction on r, we get a curve sequence {P(r1,r)}∞r=0 (see
Algorithm 2), and we will prove its convergence in Sect. 3.3.
In this way, we can obtain P(r1)

i = P(r1,∞)
i by iteration.

Once we have P(r1)
i for each i , let P(r1+1,0)

i be P(r1)
i , the

corresponding curve is P(r1+1,0)(t), then

λ
(r1)
j = λ

(r1−1)
j + μ(P(r1+1,0)(s j ) − R j ), (10)

where μ satisfies the condition 1
μ

>
β0
2 , in which, β0 is

the largest eigenvalue of B(ATA)−1BT. Up to now, we have
updated the control points P(r1+1,0) from P(r1,0) and parame-
ters λ(r1) from λ(r1−1), thus one iteration of Uzawa algorithm
is completed. By induction on r1, we can get the Uzawa iter-
ative solution P of the saddle point problem in (6). A general
form of CLSPIA algorithm can be written as

P(r1,r+1) = P(r1,r) + �(r1,r),

�(r1,r) = 1

μ1
(ATQ − BTλ(r1−1) − ATAP(r1,r)),

λ(r1) = λ(r1−1) + μ(BP(r1) − R),

where P(r1) = P(r1,∞). Next, we will show the iterative
method is convergent.

3.3 Convergence analysis

In this subsection, we discuss the convergence of the iterative
algorithm.

Theorem 1 The iterative method defined by

P(r1,r+1) = P(r1,r) + �(r1,r)

is convergent.
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Algorithm 2 CLSPIA Algorithm

Require: Given μ and μ1, initialize λ and P(1,0)

Ensure: Find the numerical solution P of (6)
for r1 = 1, 2, . . . do
for r = 0, 1, . . . do
P(r1,r)(t) ← ∑n

i=0 Bi,l (t)P
(r1,r)
i

For all j , compute δ
(r1,r)
j ← Q j − P(r1,r)(t j )

For all i , compute �
(r1,r)
i by (8)

For all i , update P(r1,r+1)
i ← P(r1,r)

i + �
(r1,r)
i

if all �(r1,r)
i satisfy convergence criterion then

return all P(r1,r+1)
i

end if
end for
For all i , initialize P(r1+1,0)

i ← P(r1,r)
i

For all j , update λ j by (10)
end for

Proof LetD = I− 1
μ1
ATA, where I is an identity matrix, we

have

P(r1,r+1) + (ATA)−1(BTλ(r1−1) − ATQ)

= D[P(r1,r) + (ATA)−1(BTλ(r1−1) − ATQ)]
= Dr+1[P(r1,0) + (ATA)−1(BTλ(r1−1) − ATQ)].

Let {γi (D)}(i = 0, 1, . . . , n) denote the eigenvalues of D,
then γi (D) = 1 − γi/μ1, where γi is one of the eigenvalues
ofATA. Sincem1 > n, matrixA is a column full rankmatrix,
ATA is a symmetric positive definite matrix, and μ1 >

γ0
2 ,

we have

1 − γi/μ1 ∈ (−1, 1),

that is, ρ(D) < 1, where ρ(D) is spectral radius of D. This
means that the above iterative method converges and

P(r1,∞) = (ATA)−1(ATQ − BTλ(r1−1)). (11)

It happens to be the theoretical solution of (7). ��
Theorem 2 The iterative method defined by

λ(r1) = λ(r1−1) + μ(BP(r1,∞) − R) (12)

is convergent, where P(r1,∞) is the result of the previous iter-
ation. Also, see Corollary 8.1 by Saad [46].

Proof Combining (11) and (12), let

M =
[
B(ATA)−1BT

]−1 [
R − B(ATA)−1ATQ

]
,

D = I − μB(ATA)−1BT,

we have

λ(r1+1) + M = D(λ(r1) + M) = Dr1+1(λ(0) + M).

Let {βi (D)}(i = 0, 1, . . . ) denote one of the eigenvalues of
D, we have βi (D) = 1 − μβi , where βi is the correspond-
ing eigenvalue of B(ATA)−1BT. Since the matrix ATA is
a symmetric positive definite matrix, and thus (ATA)−1 is
also a symmetric positive definite matrix. Thus, there exists
a real reversible matrixC, such that (ATA)−1 = CCT. Then,
we have B(ATA)−1BT = (BC)(BC)T, and BC is a non-
singular matrix. So (BC)(BC)T is a positive definite matrix,
and thus B(ATA)−1BT is also a positive definite matrix. At
the same time, since 1

μ
>

β0
2 and β0 is the largest eigen-

value of B(ATA)−1BT, for each i , we have μβi ∈ (0, 2).
Therefore, βi (D) ∈ (−1, 1), and ρ(D) < 1. This means that
λ(∞) = −M,

λ(∞) =
[
B(ATA)−1BT

]−1 [B(ATA)−1ATQ − R],

thus the above iteration converges. ��

3.4 CLSPIA for surface fitting

TheCLSPIA introduced in Sects. 3.2 and 3.3 can be extended
to the case of tensor product surface fitting. For the remainder
of this section, we provide further details for this case.

Assume that {Ki }mi=0 is an ordered set of pointswhich need
to be fitted, {Qi }m1

i=0 ⊂ {Ki }mi=0 with parameters {(tui , tvi )} is
the set of points to be approximated, and {Ri }m2

i=0 ⊂ {Ki }mi=0
with parameters {(sui , svi )} is the set of points to be inter-
polated. To define the fitting surface P(u, v) in domain
(u, v) ∈ [0, 1]2 as

P(u, v) =
n1∑
h=0

n2∑
l=0

Bh(u)Bl(v)Ph,l ,

where Ph,l is a set of control points, Bh(u) and Bl(v) are
the basis functions in two dimensions of the tensor product,
respectively. Then, the constrained fitting problem is defined
as

P = argmin
P

m1∑
i=0

∥∥P(tui , tvi ) − Qi
∥∥2

s.t . P(sui , svi ) = Ri , (i = 0, 1, . . . ,m2).

where P = [P0,0, P0,1, . . . , Pn1,n2 ]T. Let us define matrices
A ∈ R

(m1+1)×(n1n2+1) and B ∈ R
(m2+1)×(n1n2+1) with

Ai, j = B j	(n2+1)(tui )B j
(n2+1)(tvi ),

Bi, j = B j	(n2+1)(sui )B j
(n2+1)(svi ),

where 	 and 
 denote quotient and remainder, respec-
tively. Similar to the curve fitting case mentioned before, by
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Fig. 2 A cubic B-spline curve with 50 control points fitting 501 input data points while interpolating 19 given points.

Fig. 3 A cubic B-spline curve with 55 control points fitting 577 input data points while interpolating 12 given points

Fig. 4 A cubic B-spline curve with 30 control points fitting 205 input data points while interpolating 11 given points

Fig. 5 An illustration of local shape fitting under different iteration steps for fitting a B-spline curve to 205 data points using 20 control points with
interpolation constraints

Fig. 6 An illustration of local shape fitting under different iteration steps for fitting a B-spline curve to 210 data points using 37 control points with
interpolation constraints
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Fig. 7 An illustration of local shape fitting under different iteration steps for fitting a B-spline curve to 210 data points using 22 control points with
interpolation constraints

applying the Lagrange multiplier method, we get

ATAP − ATQ + BTλ = 0,

BP = R,

with Q = [Q0, Q1, . . . , Qm1 ]T, R = [R0, R1, . . . , Rm2 ]T
and λ = [λ0, λ1, . . . , λm2 ]T. This also leads to a saddle prob-
lem
[
ATA BT

B 0

] [
P
λ

]
=

[
ATQ
R

]
, (13)

Therefore, we can iteratively solve the saddle point problem
in a similar way to that in Sect. 3.2.

At the beginning of the iteration,we specify a set of control
points {P(1,0)

h,l }n1,n2h=0,l=0, where the first and second super-
script (1, 0) of Ph,l represent the iteration steps of Uzawa
algorithm and LSPIA, respectively, and the initial vector
λ

(0)
i = [1, 1, 1]T for each interpolation point Ri as the initial

value. Then, the initial surface is given by

P(1,0)(u, v) =
n1∑
h=0

n2∑
l=0

Bh(u)Bl(v)P(1,0)
h,l .

Suppose that we have the r-th surface defined by P(r1,r)

(u, v) in the r1-th Uzawa iteration, the j-th difference vector
δ
(r1,r)
j between each approximating data point Q j and the

corresponding point on the surface is

δ
(r1,r)
j = Q j − P(r1,r)(tu j , tv j );

then, the adjusting vector �
(r1,r)
h,l for the control point with

subscript {h, l} is defined as

�
(r1,r)
h,l = 1

μ1
(ε

(r1,r)
h,l − θ

(r1)
h,l ),

where μ1 is a constant satisfying the condition μ1 >
γ0
2 , in

which, γ0 is the largest eigenvalue of ATA, and

ε
(r1,r)
h,l =

m1∑
j=0

Bh(tu j )Bl(tv j )δ
(r1,r)
j ,

θ
(r1)
h,l =

m2∑
j=0

Bh(su j )Bl(sv j )λ
(r1−1)
j .

The control points are then updated as

P(r1,r+1)
h,l = P(r1,r)

h,l + �
(r1,r)
h,l , (14)

and the (r + 1)-th surface is generated by

P(r1,r+1)(u, v) =
n1∑
h=0

n2∑
l=0

Bh(u)Bl(v)P(r1,r+1)
h,l .

Same as before, by induction on r, we get a surface sequence
defined by {P(r1,r)(u, v)}∞r=0 and its convergence can also be
proved in a similar way, as in the curve case. In this way,
we can obtain P(r1)

h,l = limr→∞ P(r1,r)
h,l for all pairs (h, l)

iteratively.
Once we get those P(r1)

h,l , let P
(r1+1,0)
h,l be P(r1)

h,l , the corre-

sponding surface is defined by P(r1+1,0)(u, v), then

λ
(r1)
j = λ

(r1−1)
j + μ(P(r1+1,0)(su j , sv j ) − R j ), (15)

where μ satisfies the condition 1
μ

>
β0
2 , in which, β0 is the

largest eigenvalue of B(ATA)−1BT.
Up to now, we have completed an iteration step of Uzawa

algorithm. By induction on r1, we can get the solution P in
(13). Its convergence can also be proved in a similar way to
the curve case.

4 Examples and discussions

In this section, we test the CLSPIA algorithm for cubic B-
spline curve and surface fitting. In Sect. 4.1, we introduce
the details of the parametrization of data points, as well as
the selection of the initial control points and knot vectors.
Then, we give some examples in Sect. 4.2 and point out the
feasibility of fitting a large-scale data set in Sect. 4.3. Finally,
a shape preserving fitting method is shown in Sect. 4.4.
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Table 1 Resulting interpolation error of different iteration steps for the six curve fitting examples, where E and “error” are the total interpolation
error and approximation error after 100,000 iterations, respectively

Example E0 E1 E3 E7 E Error References

Ex 1 1.5258e−05 8.1082e−06 6.7438e−06 4.6532e−06 5.2012e−22 1.5221e−05 Fig. 3

Ex 2 1.9675e−05 6.2619e−06 4.8687e−06 2.4544e−06 1.8556e−21 1.2134e−05 Fig. 4

Ex 3 5.451e−05 1.3895e−05 1.3243e−05 1e-05 1.7835e−21 2.2165e−05 Fig. 5

Ex 4 0.0005 0.00055 5.1667e−04 4.8333e−04 2.9683e−21 1.9265e−04 Fig. 6

Ex 5 0.00038 0.00035 0.00036 0.00031 2.2077e−21 4.220e−4 Fig. 7

Ex 6 8.4211e−05 6.8421e−05 5.2632e−05 3.1638e−05 7.6653e−22 5.0622e−05 Fig. 2

Fig. 8 Illustration of fitting error with respect to iteration number, using
six examples (normalized to [0, 1])

4.1 Initial parameter selection

In our examples, we use the chord length parametrization
method [43] to parametrize data points. Given an ordered set
of points {Ki }mi=0, the chord length is parametrized to assign
parameter {τi }mi=0 to {Ki }mi=0 as follows:

τ0 = 0, τm = 1,
τi = τi−1 + ‖Ki−Ki−1‖

d , i = 1, 2, . . . ,m − 1,

where d = ∑m
i=0 ‖Ki − Ki−1‖ is the total chord length.

Chord length parametrization is popular because it is simple
to implement, and in general, it leads to fitting curves with
nice shape.

The knot vector [43] of the fitting cubic B-spline curve
defined by P(t) = ∑n

i=0 Bi (t)Pi is defined as

[0, 0, 0, 0, τ 4, τ 5, . . . , τ n, 1, 1, 1, 1],

and

τ j+3 = (1 − α)τi−1 + ατi , j = 1, . . . , n − 3,
i = � jd, α = jd − i, d = m+1

n−2 .

Fig. 9 When the number of control points is equal to the number of
interpolation points, position change of the approximate points has no
effect to the resulting curve. (Use the same parameters for both fits.)

Although the initial control points can be chosen arbi-
trarily in the iterative method, appropriate initial values can
reduce the number of iterations. In our experiments, we use
the same method as that of [16] to calculate better initial
control points because by this method, in general, the initial
curve is close to the final fitting curve.

4.2 Examples

We present six examples to show the efficiency of the
CLSPIA algorithmproposed in Sect. 3.2. The number of con-
trol points of the fitting B-spline curves are 55, 30, 20, 37,
22 and 50, respectively. The experimental results are shown
in Figs. 2, 3, 4, 5, 6 and 7. In each figure, the initial fitting
curve is shown in (a), and the cubic B-spline curves after 1,
3 and 7 iterative steps are shown in (b), (c) and (d), with the
final fitted curve shown in (e) and (f). (a–e) show amagnified
view of the selected area, which is visible in (f). We use

Ēk =
m2∑
j=0

∥∥∥∥∥R j −
n∑

i=0

Bi (s j )P
k
i

∥∥∥∥∥
2

to represent the total error, and

Ek = Ēk/(m2 + 1)
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Fig. 10 A B-spline curve fitting to 370 data points with the differ-
ent number of control points and the different number of interpolation
points. a–c comparison while interpolating 15 given points with gradu-
ally added control points, and the numbers of control points are 25, 35

and 45, respectively. d–f comparison using 35 control points and with
gradually added interpolation points, and the numbers of interpolation
points are 0, 10 and 15, respectively.

Fig. 11 Comparison of LSPIA and CLSPIA

to represent the average error of the interpolation points after
the k-th iteration. Table 1 shows the variation of the error of
the interpolation points in the six examples. Figure8 shows
that the convergence speed is faster, and a higher fitting accu-
racy can be obtained after fewer iterations.

When the number of control points is equal to the number
of points to be interpolated, according to (5), the number of
equations in this case is equal to that of unknowns, and thus
the control points of fitting curve should be the same as an
interpolation B-spline curve. We verify this conclusion by an
example, in whichwe randomly select 35 out of 370 points as
the set of interpolation points and let the number of control
points of the fitting curve be 35. The final fitting curve is
shown in Fig. 9a.

Then, we fix the position and parameters of the points to
be interpolated and change the positions of the points to be
approximated, and the fitting curve is shown in Fig. 9b. From
these two figures, we can see that the fitting curves are the
same. We also present two examples in which the control
points and interpolation points are gradually added, and the
results are shown in Fig. 10.

In Fig. 11, we show the results of the LSPIA algorithm
[16] and CLSPIA, and the curve generated by CLSPIA can
interpolate the given interpolation points (red asterisk points)

Fig. 12 A cubic B-spline surface with 13 × 13 control points fitting
10,201 input data points while interpolating 60 given points

Fig. 13 A cubic B-spline surface with 35 × 30 control points fitting
12,505 input data points while interpolating 60 given points

well, but this will lead to an increase in the fitting error of
those points that need to be approximated. In this example,
the red solid line is the final fitting curve, the black circles
are the control points, the blue solid points are the points
that need to be approximated, and the red asterisk points in
Fig. 11b are the points that need to be interpolated.

For constrained surface fitting using CLSPIA, we present
two examples as shown in Fig. 12 and 13. In the first surface
example, there are 10,201 data points, 60 of which need to be
interpolated, and a good fitting surface can be obtained with
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Table 2 Illustration of the average interpolation error in different iteration steps for the two examples of surface fitting, where E and “error” are
the average interpolation error and approximation error after 200,000 iterations, respectively

Example E0 E1 E3 E7 E20 E Error References

Surface 1 3.6963e−05 4.5548e−06 2.7893e−06 1.9812e−06 5.8185e−07 1.6472e−33 3.6864e−07 Fig. 12

Surface 2 6.9578e−05 6.7447e−05 7.5758e−05 6.0697e−06 3.3012e−06 9.9529e−23 1.645e−07 Fig. 13

Fig. 14 In the two examples of surface fitting, we plot the variation of
the error of interpolation points with respect to the number of iterations.
(Note that the vertical axis scale is logarithmic.)

Fig. 15 A B-spline curve fitting to 10,001 data points

13 × 13 control points. In the second, there are 12,505 data
points, 60 of which need to be interpolated, and a good fitting
surface can be obtained with 35× 30 control points, and the
blue and red solid lines in Figs. 12b and 13b represent the
iso-parametric lines in the u-direction and the v-direction,
respectively. Table 2 shows that the variation of the average
error of the interpolation points in the two examples, and
Fig. 14 shows that the convergence speed. As expected, one
achieves similar fitting and interpolation properties as that
for curve fitting.

4.3 Fitting a large-scale data set

When the number of data points is particularly large, the
method of directly solving the equations is not feasible,
because the condition number of the coefficient matrix is
so large and so the equation is relatively ill conditioned [42].
This leads to unstable solutions for solving the equations
directly. Another reason is that the matrix is too large and
the computational costs become intractable. The iterative

Fig. 16 Adjust control points according to shape constraints {P(r)
i }

method is most suitable for the fitting problem of large-scale
data sets. Figure15 shows an example in which 10,001 data
points are approximated and 40 of them are interpolated.

4.4 Shape preserving fitting

In general, shape preservingmeans that the number of inflec-
tion points of the fitted curve is the same as that implied by
the sequence of data points. We show that one can easily
achieve shape preserving curve fitting using CLSPIA, while
it may not be that easy by directly solving a system of linear
equations.

First, the initial control points are selected from the data
set such that the initial B-spline curve satisfies the shape
features implied by the data points. During each iteration,
we ensure that the number of inflection points in the updated
control polygon {P(r+1)

i }ni=0 is the same as that in the control

polygon {P(r)
i }ni=0. Therefore, the number of inflection points

in the limit curve is the same as that in the initial curve. This
can be achieved by the following method [16]:

1. For each i = 0, 1, . . . , n, update the control point P(r)
i ;

2. When updating P(r)
i to P(r+1)

i , consider the following two
situations:

(a) Consider four consecutive control points P(r+1)
i−2 ,

P(r+1)
i−1 , P(r)

i and P(r)
i+1, if the line segment ending in

P(r)
i , P(r)

i + �
(r)
i intersects with ray from P(r+1)

i−1 to

P(r)
i+1

or ray from P(r+1)
i−1 to P(r+1)

i−2 ,
the intersection is recorded as M , then let the new
control point P(r+1)

i := P(r)
i + α(M − P(r)

i ), where
α ∈ (0, 1) (see Fig. 16a).
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(b) Consider four consecutive control points P(r+1)
i−1 , P(r)

i ,

P(r)
i+1 and P(r)

i+2, if the line segment ending in P(r)
i ,

P(r)
i + �

(r)
i intersects with ray from P(r)

i+1 to P(r+1)
i−1

or ray from P(r)
i+1 to N ,

the intersection is recorded as M , where N is an
extension of line from P(r)

i+2 to P(r)
i+1.

Then, let the new control point P(r+1)
i := P(r)

i +
α(M − P(r)

i ), where α ∈ (0, 1) (see Fig. 16b).

3. For P(r)
1 and P(r)

n−1, just consider one of the above condi-
tions.

In our experiment, we let α = 0.8, and the experimen-
tal results are shown in Fig. 17. The details can be seen in
Fig. 17c, d. It can be seen that the number of curve inflection
points remains unchanged after adding the shape constraint.

5 Conclusion

We have presented the CLSPIA method for B-spline curve
and surface fitting. It is based on LSPIA, the Lagrange
multiplier and the Uzawa algorithm. The method aims at
finding the best fitting curve approximating the input data
set while interpolating some points of the given data. We
have proved that the iterative algorithm is convergent, and the
limit curve or surface is consistent with the results obtained
by constrained least squares fitting. CLSPIA is a typical
PIA algorithm, so it has a clear geometric meaning and
can dynamically adjust parameters, knot vectors and control
points in the iterative process and update the control points in
each iteration. CLSPIA is suitable for fitting large-scale data
points because it does not need to directly solve a large sys-
tem of linear equations, and the computational complexity of
CLSPIA in one iteration is O(m), where m is the number of
points to be fitted. Furthermore, with CLSPIA, we can obtain
shape preserving fitting curves by adding a shape constraint
to the iterative method. While this paper mainly focuses on
CLSPIA for constrained B-spline curve fitting, a brief cov-
erage is also provided to extend the method to constrained
surface fitting. As for future work, the method can also be
extended for constrained surface fitting while interpolating
some of the input data points using other basis functions,
such as constrained subdivision surface fitting for complex
models of arbitrary topology.

5.1 Limitation

For B-spline curve or surface fitting, there are still several
parameters that need to be determined, such as the parame-
terization of data points, the number of control points and the
selection of knot vectors. In this paper, we have not discussed

Fig. 17 Comparison of fitting curves before and after shape constraints

how to determine these parameters effectively for practical
examples.
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